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Abstract

Deep learning approaches have achieved unprecedented performance in visual
recognition tasks such as object detection and pose estimation. However, state-
of-the-art models have millions of parameters represented as floats which make
them computational expensive and constrain their deployment on hardware such as
mobile phones and IoT nodes. Most commonly, activations of deep neural networks
tend to be sparse thus proving that models are over parametrized with redundant
neurons. Model compression techniques, such as pruning and quantization, have
recently shown promising results by improving model complexity with little loss in
performance. In this work, we extended pruning, a compression technique which
discards unnecessary model connections, and weight sharing techniques for the task
of object detection. With our approach we are able to compress a state-of-the-art
object detection model by 30.0% without a loss in performance. We also show that
our compressed model can be easily initialized with existing pre-trained weights,
and thus is able to fully utilize published state-of-the-art model zoos.

1 Introduction

Deep neural networks are computationally expensive. Their memory and compute complexity limit
their deployment on edge devices and make them unsuitable for applications with strict latency
requirements [19]. The progress in VR, AR, IoT and smart wearable devices create opportunities for
researchers to tackle the challenges of deploying deep neural networks on devices with constrained
memory, CPU, bandwidth and energy [11, 14].

To this end, compression techniques have shown promising results in reducing the memory and
time requirements of deep neural networks. Pruning reduces the model’s complexity by removing
unnecessary elements in their structures at different levels and without a significant drop in accuracy
[17]. Quantization converts a model to use reduced precision integer representation for the weights or
activations. Quantizing a model helps reduce its size leading to higher throughput of operations on
CPU or GPU, and improved inference speed. Operationally, quantization is achieved by multiplying
the floating point parameters with a scale factor and rounding the output to its nearest integer.
Quantization approaches differ in the way the scaling factor is determined [15, 10].

In this work, we apply pruning and quantization techniques for visual recognition tasks. We apply
these compression techniques on the convolutional neural networks which commonly comprise the
backbone architectures of state-of-the-art recognition models such as in Faster RCNN [22]. There,
60% of the model parameters belong to the CNN backbone. Model compression on CNNs is well
suited as recent studies [17] have shown that CNN structures have redundant parameters which can
be removed without loss in performance. In addition to pruning, we further improve the efficiency of
object recognition models by quanitizing their parameters from 32-bit float to 8-bit integer precision.
Finally, we show that our compression techniques also support pre-traiend model weight initialization
thus making it possible to take advantage of published model zoos.



2 Related work

Object Detection. Object detection has witnessed tremendous progress in recent years due to its
wide range of applications and recent technological advancement [11]. The task has found wide
practical applications such as self driving cars, robotic vision, user content understanding and much
more [1]. The success of object detection is mainly attributed to recent breakthroughs in deep neural
networks and hardware, namely Graphical Processing Units (GPUs) [11]. Recent state-of-the-art
object detectors [4, 22, 8, 6] break the problem into two stages. First, a CNN proposes regions of
interest on the input image. Second, another network extracts features from the input image and
the detected regions and performs object classification and localization or pose estimation. Faster
R-CNN, an object detection approach proposed in [22], follows the aforementioned two-stage recipe
and is comprised of a CNN backbone followed by a region proposal network (RPN) and a region
classifier.

Undoubtedly, the CNN backbone is an essential part of object recognition systems as it embeds the
input image into a higher dimensional feature space. Recent breakthroughs in CNN architectures has
pushed performance to new highs. Feature Pyramid Networks (FPN) proposed in [13] draw lateral
connections between different layers of the CNN and have now became an important building block
of state-of-the-art object detection systems. The lateral connections in FPNs fuel all scales of a CNN
with semantics from the downstream task and enable detection of objects in a variety of scales.

Detectron2. In 2019 Facebook AI Research open sourced the next generation object detection
platform known as Detectron2 [23]. It can localize, recognize and predict attributes for every object
in an image providing a complete understanding of every pixel in the image. Detectron2 is built in
Pytorch, it is a ground up rewrite of Detectron [5] with faster speed, more accurate models and more
modular design. Detectron2 includes Faster R-CNN, Mask R-CNN, RetinaNet and other popular
recognition models in the computer vision community.

Detectron2 features a wide variety of object recognition tasks including object detection where each
object is detected with a label and a bounding box, instance segmentation where each object is marked
with its 2D silhouette, human pose estimation where for each detected human its landmarks (e.g.
right shoulder) are localized and panoptic segmentation which predicts things and stuff (e.g. sky).
Along with these tasks, Detectron2 provides a comprehensive model zoo of pre-trained weights for
each tasks and for different backbone architectures (e.g. ResNet50, ResNet50FPN etc.)

Detectron2 is flexible to use and it is designed in way that enables the user to import it as a normal
library and build preferred customization on the top of it. Using the registration provided user can
replace its backbone, add new type of head, use a custom dataset, or customize other components in
the system. Nonetheless, most models in Detectron2 are heavy with millions of parameters and thus
hard to deploy on resource-constrained devices.

Model Compression. Recent techniques of compacting and accelerating deep neural network models
are classified into four broad categories: parameter pruning and quantization, low-rank factorization,
transferable/compact convolutional filters and knowledge distillation [2].

• Network pruning. The main goal of network pruning is to discard redundant, non-
informative weights in a pre-trained DNN model. The deep compression method in [2]
removes the redundant connections and quantizes the weights. Huffman coding is then used
to encode the quantized weights. In recent works, there is a growing interest in sparsifying
model weights during training. Those sparsity constraints are typically introduced in the
optimization problem as Ln-norm regularizers. An early approach to pruning was the biased
weight decay [2]. Magnitude based pruning [16] is among the most widely used approaches
in pruning. The Optimal Brain Damage and the Optimal Brain Surgeon methods [7] that
reduce the number of connections based on the Hessian of the loss function has been proven
to give sparse model with good accuracy [2]. The Soft Filter Pruning (SFP) method proposed
in [9] accelerate the inference procedure of deep Convolutional Neural Networks (CNNs)
by enabling the pruned filters to be updated when training the model after pruning [2].

• Quantization and Binarization. Model quantization compresses the original network
by reducing the number of bits required to represent each weight [3]. [2] showes that
8-bit quantization of the model weights can result in significant speed-up with minimal
loss of accuracy. For weight initilization, quantization can be applied to the pre-trained
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weights or the weights can be quantized during training. [3] only quantizes a different
random subset of weights during each forward pass, allowing for unbiased gradients to
flow through the weights. Binarization, an extreme case of quantization also referred to
as binary neural networks, represents each weight by a single bit. Assuming a weight
matrix W ∈ Rd×k in a binary neural network, each entry Wij ∈ {0, 1}. Binarizing the
model largely saves storage and compute, and it is a promising technique for deploying
deep models on resource-constrained devices. However it results in very poor performance
compared to other compression techniques.

It has been suggested that pruning, quantization and low-rank factorization are the best compression
techniques to use when working with pre-trained models [2]. Evidence so far suggests that parameter
pruning and quantization give good results with little loss in performance.

3 Methods and Experiments

One of the main facts that make deep models so compressible is their redundancy in parameters
[17]. Specifically, all of the CNN structures have redundant weights which can be removed. The
redundancy is originated from the brain mechanism, which can recover its functional capability
even in the existence of reasonable neural damage [17, 12]. Our approach compresses the model
parameters by introducing sparsity into the weights and using few bits to represent each parameter
with marginal performance sacrifice.

3.1 Pruning

Pruning generally removes the parts of the model that contribute less or nothing to the final perfor-
mance. The result is a sparse model that can be stored efficiently and with an high inference speed
with minimal loss in accuracy.

Weight pruning. in this approach, to achieve a sparsity percentage of k% (i.e. remove k% of
the connections) we rank the individual parameters in the parameter matrix w according to their
magnitude (absolute value), and then set to zero the smallest k% of the weights. We use Ln norm to
measure their magnitude. Setting an individual parameter to zero is equivalent to deleting connections.

Unit/Neuron pruning. In this approach, we set entire columns in the parameter matrix to zero.
This corresponds to completely removing a neuron. We use L2-norm to rank the columns of the
parameters matrix. L2-norm helps to achieve a sparsity of k% (i.e. remove k% of the nodes), finally
we delete the smallest k% columns.

Pruning can be cast as an optimization problem

min
w

L(w;D) = min
w

1

n

n∑
i=1

l(w;xiyi) s.t. ‖w‖0 ≤ k (1)

where w are our model parameters, D = {xi, yi}ni=1 is our dataset, l(w;x, y) is our loss function
and k represents the desired sparsity level in the parameters.

Pruning converts a dense model into a sparse model, it only keeps important connections to induce
sparsity into the model weights. Pruning is effective in reducing the network complexity and
addressing the over-fitting problem.

Generally, a compressible weight vector ∈ Rn may be written as a sparse vector s ∈ Rn (containing
mostly zeros) in a transform basis Ψ ∈ Rn×n.

w = Ψs (2)

Actually, when high-dimensional signals exhibit low-dimensional structure, they admit a sparse
representation in an appropriate basis or dictionary. In addition to a signal being sparse in an SVD
or Fourier basis, it may also be sparse in an overcomplete dictionary whose columns consist of the
training data itself.

Neurons and Synapses importance. Neurons/synapses are removed based on the magnitude of
their weights [16]. Mostly, parameters with low magnitude are removed. The other technique is to
prune neurons/synapses based on activations, gradients or custom rules for neural importance.
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Figure 1: Pruning framework.

Figure 2: The geometric properties of various norms

Local vs. global pruning. Local pruning consists of removing a fixed percentage of units/connections
from each layer by comparing each unit/connection exclusively to the other units/connections in
the layer. On the contrary, global pruning pools all parameters together across layers and selects a
global fraction of them to prune. The latter is particularly beneficial in the presence of layers with
unequal parameter distribution, by redistributing the pruning load more equitably. A middle-ground
approach is to pool together only parameters belonging to layers of the same kind, to avoid mixing,
say, convolutional and fully-connected layers.

Unstructured vs. structured pruning. Unstructured pruning removes individual connections, while
structured pruning removes entire units or channels. Note that structured pruning along the input axis
is conceptually similar to input feature importance selection. Similarly, structured pruning along the
output axis is analogous to output suppression

The use of the l1 norm to promote sparsity significantly predates model compression. In fact, many
benefits of the l1 norm were well-known and oft-used in statistics decades earlier.

3.2 Experimental setup

Before applying any compression techniques, using our custom dataset we consider the training of
a faster RCNN with a Resnet50 backbone and with FPN. Starting with the pre-trained weights of
the Detectron2 detection model zoo trained on the COCO dataset and which has inference speed of
38ms/im, average precision of 40.2 and it requires 3GBs memory to train.
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Dataset. We have collected our dataset from East African parks, it contains 1309 instances. The
following dictionary describes the categories of animals that we are aware of and their number of
instances into the dataset. Keys represent the animal category while the value represent the number of
instances per that category {’giraffe’: 101, ’person’: 152, ’zebra’: 131, ’elephant’: 166, ’impala’:
169, ’monkey’: 80, ’lion’: 108, ’leopard’: 63, ’crocodile’: 61, ’buffalo’: 97, ’hyena’: 70, ’bird’:
123, ’gorilla’: 88}. We split our dataset into training and validation on a ration or 80% and 20%
respectively.

Model. Following the common experimental setting in related work on network pruning in [17], we
extended their approaches from image classification to the object detection model with Faster RCNN
architecture. Our approaches can be used on other object detection models such as YOLO [21] [20]
among others. Our model has three main blocks; backbone, proposals generator and ROI heads. The
whole model has a total of 41.4 Millions of trainable parameters.

Model Size

Backbone Proposals generator ROI heads Total
Trainable parameters 26.8M 0.6M 14.0M 41.4M
Size on Memory 107.2MBs 2.4MBs 56MBs 165.6MBs

Table 1: Parameters per Faster RCNN block.

The backbone has more than 60% of the total parameters, this makes it the most targeted block in our
compression experiments.

We take advantage of the publicly available state-of-the-art object detection models in Detectron2 and
its model zoon. We use the Pytorch pruning library [18] which works really well when the model is
fully implemented in Pytorch. To improve the performance of our approach with marginal accuracy
drop, we treated each block with in our model as a compression task, so global pruning here refers to
the global parameters of a particular block.

To sparsify our weight tensors we had first to determine the weights that do not contribute much on
the model performance. Early work showed that parameters magnitude could be a good measure to
know how each individual parameter contributes to the final activation. Generally but not always,
parameters with small magnitude do not contribute too much to the model performance, this makes
Ln-norm one of the good techniques to sparsify the model parameter tensors.

Pruning Mask. After comparing the weights in our model parameters, a pruning mask of the same
shape as our parameters and whose values ∈ {0, 1} is generated, where 0 represent parameters to be
removed and 1 represent the parameters to keep.

L1 Global Unstructured: The magnitude of parameters is measured using L1-norm and the com-
parison is between individual parameters. Depending on the percentage of parameters to be pruned,
individual connections starting from the one with smallest magnitude are removed. The pruning
mask is updated with 0’s representing pruned parameters and 1’s otherwise. Modular wise the global
pruning cares only on the percentage to be pruned and the parameters with small magnitude, this
means more parameters might be pruned from a single module depending on how they would fire
activation. This makes global pruning a good approach as it globally remove unnecessary parameters.

Ln norm Global structured/unstructured: When it is structured, the entire units or channels
would be removed depending on their magnitude measured by using Ln norm, and the percentage of
parameters we want to prune. The parameters of small magnitude will be pruned first. In case of
Unstructured the only difference is how we compare, we remove individual connections instead of
removing the channels or units.

Random structured/Unstructured: With this method we randomly prune a percentage of param-
eters. This method might be structured or unstructured. The main problem with this approach,
parameters/connections are pruned randomly, there is no any measure on parameters importance.

3.3 Experiment Results

Regardless of the goal, pruning imposes a trade-off between model efficiency and quality, with
pruning increasing the former while (typically) decreasing the latter.
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Figure 3: AP50 for our compression.

Table 2 shows a comparison of different methods of pruning used, For low sparsity our approaches
outperforms even the dense baseline, which is in line with regularization properties of network
pruning. On large models, pruning shows reasonable performance even with extremely high sparsity
level.

Pruned percentage in the backbone

0% 10% 20% 30% 40% 50% 70% 80% 90%
AP50 87.92 87.97 88.40 88.15 86.95 83.48 77.42 60.24 0.17
Memory(MBs) 165.6 154.88 144.16 133.44 122.72 112.0 90.56 79.84 69.12

Pruned percentage in the ROI head

0% 10% 20% 30% 40% 50% 70% 80% 90%
AP50 87.92 87.97 88.40 88.15 86.95 83.48 77.42 60.24 0.17
Memory(MBs) 165.6 160.0 154.4 148.8 143.2 137.6 126.4 120.8 115.2

Pruned percentage in the both backbone and the ROI head

0% 10% 20% 30% 40% 50% 70% 80% 90%
AP50 87.92 87.72 87.04 83.60 73.64 61.18 54.69 33.12 0.14
Memory(MBs) 165.6 149.2 132.9 116.6 100.3 84.0 51.3 35.0 18.7

Table 2: AP50, Model size results of the used Pruning approach (L1 Unstructured) and quantization.

4 Conclusion

We show that pruning and quantization techniques can efficiently compress object recognition models
with little loss in performance. We can prune 40% of the model with loss of a few points in average
precision. The reduction in memory allows for efficient storage and enables deployment of object
detectors on devices of lower computational capacity.
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Figure 4: Distributed AI powered IoT nodes.

Broader Impact

Africa’s tourism industry is now the second fastest growing in the world. Some 67 million tourists
visited Africa in 2018, representing a rise of 7% from a year earlier. Tourism is an important economic
sector for many countries in Africa. The touristic particularity of Africa lies in the wide variety of
points of interest, mainly Parks, and multitudes of landscapes as well as the rich cultural heritage.
Visiting the park does not guarantee to see animals that you wanted to see because sometimes even
the guards they don’t really know where actually the animals are located because most of the parks
cover a huge geographical area. They try to use cars to travel into the park so that they could see
animals that they want to visit, however most of the time they do not really know where animals are
located.

With the animals detection model and compression techniques explored in our work as well as the
dataset used, our work can contribute to the modernization of tourism in Africa and worldwide. As the
compressed model is light, with little modification it can be deployed on distributed IoT nodes, which
constantly update a dashboard indicating where a particular types of animal is located. Those nodes
should be powered by solar energy and they shouldn’t rely on the internet connectivity, furthermore
to make the system affordable, they should be implemented with low cost sensors and components
like Raspberry pi etc.

How it could work: Assume that we have deployed an animal detection model in each node, and the
model is able to detect different types of animals found in that park and as it detects an animal it
should update the dashboard saying that at this time, this type of animal is located at this location.
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